SI Session: Week of March $31^{\text {st }}$
Tuesdays 5:30-7:30 PM, Rm. 1130
Wednesdays 4:20-6:20 PM. Rm. 1229

Prof. Stockton : Calculus II : Spring 2008
SI Leader : Neil Jody

Write the first five terms of the sequence.

1. $a_{n}=\frac{(-1)^{\frac{n(n+1)}{2}}}{n^{2}}$

Write an expression for the nth term of the sequence.

1. $3,-\frac{3}{2}, \frac{3}{4},-\frac{3}{8}, \ldots$
2. $\frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots$
3. $\frac{1}{2 \cdot 3}, \frac{2}{3 \cdot 4}, \frac{3}{4 \cdot 5}, \frac{4}{5 \cdot 6}, \ldots$

Simplify the ratio of factorials.

1. $\frac{10!}{8!}$
2. $\frac{25!}{23!}$
3. $\frac{(n+2)!}{n!}$
4. $\frac{(2 n-1)!}{(2 n+1)!}$
5. $\frac{(2 n+2)!}{(2 n)!}$

Determine the convergence or divergence of the sequence with the given nth tern. If the sequence converges find its limit.

1. $a_{n}=\frac{3 n^{2}-n+4}{2 n^{2}+1}$
2. $a_{n}=\frac{\ln \left(n^{3}\right)}{2 n}$
3. $a_{n}=\frac{(n+1)!}{n!}$
4. $a_{n}=\left(1+\frac{k}{n}\right)^{n}$

Find the first five terms of the sequence of partial sums.

1. $3-\frac{9}{2}+\frac{27}{4}-\frac{81}{8}+\frac{243}{16}-\ldots$

Verify that the infinite series diverges.

1. $\sum_{n=1}^{\infty} \frac{n}{n+1}$
2. $\sum_{n=1}^{\infty} \frac{2^{n}+1}{2^{n+1}}$

Find the sum of the convergent series.

1. $\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+2)}$
2. $\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}$
3. $3-1+\frac{1}{3}-\frac{1}{9}+\ldots$
(a) Write the repeating decimal as a geometric series. (b) Write its sum as the ratio of two integers.
4. $0.0 \overline{75}$

Determine the convergence or divergence of the series.

1. $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
2. $\sum_{n=0}^{\infty} \frac{4}{2^{n}}$
3. $\sum_{n=1}^{\infty}\left(1+\frac{k}{n}\right)^{n}$
