SI Session Week 2 : January 28th Tuesdays 5:30 – 7:30 PM, Rm. 1130 Wednesdays 4:20 – 6:20 PM. Rm. 1229

Write a definite integral that represents the Area between the given curves.

1.
$$y = \sec^2 x$$
, $y = 2$, $x = -\frac{\pi}{4}$, $x = \frac{\pi}{4}$

2.
$$y = e^x$$
, $y = e^{2x}$, $x = 0$, $x = \ln 2$

Write a definite integral that represents the volume of the solid that results when the region enclosed by the given curves is revolved about the x-axis.

1.
$$y = e^{-2x}$$
, $y = 0$, $x = 0$, $x = 1$

2.
$$y = \sqrt{25 - x^2}$$
, $y = 3$

Write a definite integral that represents the volume of the solid that results when the region enclosed by the given curves is revolved about the *y*-axis.

1.
$$x = y^2$$
, $x = y + 2$

$$2. \quad y = x^2, \ x = y^2$$

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y = \sqrt{x}$, y = 0, x = 9 is revolved about the line x = 9.

Write a definite integral that represents the volume of the solid that results when the region enclosed by $x = y^2$ and x = y is revolved about the line y = -1.

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y = \frac{1}{x^3}$, x = 1

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y = x^3$, y = 1, x = 0 is revolved about the line y = 1.