SI Session Week 2 : January $28^{\text {th }}$
Tuesdays 5:30-7:30 PM, Rm. 1130
Wednesdays 4:20-6:20 PM. Rm. 1229

Prof. Stockton : Calculus II : Spring 2008 SI Leader : Neil Jody

Write a definite integral that represents the Area between the given curves.

1. $y=\sec ^{2} x, y=2, x=-\frac{\pi}{4}, x=\frac{\pi}{4}$
2. $y=e^{x}, y=e^{2 x}, x=0, x=\ln 2$

Write a definite integral that represents the volume of the solid that results when the region enclosed by the given curves is revolved about the x-axis.

1. $y=e^{-2 x}, y=0, x=0, x=1$
2. $y=\sqrt{25-x^{2}}, y=3$

Write a definite integral that represents the volume of the solid that results when the region enclosed by the given curves is revolved about the y-axis.

1. $x=y^{2}, x=y+2$
2. $y=x^{2}, x=y^{2}$

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y=\sqrt{x}$, $y=0, x=9$ is revolved about the line $x=9$.

Write a definite integral that represents the volume of the solid that results when the region enclosed by $x=y^{2}$ and $x=y$ is revolved about the line $y=-1$.

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y=\frac{1}{x^{3}}, x=1$, $x=2, y=0$ is revolved about the line $x=-1$.

| | | | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

Write a definite integral that represents the volume of the solid that results when the region enclosed by $y=x^{3}, y=1$, $x=0$ is revolved about the line $y=1$.

