SI Session: Week of April $28^{\text {th }}$
Tuesdays 5:30-7:30 PM, Rm. 1130
Wednesdays 4:20-6:20 PM. Rm. 1229

Prof. Stockton : Calculus II : Spring 2008 SI Leader : Neil Jody
[1] Find a power series for the function, centered at c and determine the interval of convergence.
(a) $f(x)=\frac{3}{2 x-1}, c=0$
(b) $f(x)=\frac{3}{x+2}, c=0$
(c) $g(x)=\frac{4 x-7}{2 x^{2}+3 x-2}, c=0$
[2] Find a power series, centered at 0 , for the following functions. Identify the interval of convergence.
(a) $h(x)=\frac{1}{4 x^{2}+1}$
(b) $f(x)=\arctan 2 x$
[3] Find the Maclaurin polynomial of degree n for the function.
(a) $f(x)=x e^{x}, n=4$
(b) $f(x)=\sec x, n=2$
[4] Find the nth Taylor polynomial centered at c.
(a) $f(x)=\sqrt{x}, n=4, c=1$
(b) $f(x)=x^{2} \cos x, n=2, c=\pi$
[5] Find the Maclaurin series for the function.
(a) $f(x)=\cos x^{3 / 2}$
(b) $g(x)=2 \sin x^{3}$
[6] Sketch the curve represented by the parametric equations(indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter.

(a) $x=t^{3}, y=\frac{t^{2}}{2}$
(b) $x=\sec \theta, y=\cos \theta, 0 \leq \theta<\frac{\pi}{2}, \frac{\pi}{2}<\theta \leq \pi$

