SI Session Final Exam Review
May $2^{\text {nd }} 2: 00$ PM - 4:00 PM Rm. 1229
May $3^{\text {rd }}$ 12:00-2:00 PM, Rm. 1229
May $5^{\text {th }} 4: 20-6: 20$ PM. Rm. 1229

Prof. Stockton : Calculus II : Spring 2008
SI Leader : Neil Jody
[1] Let C be the portion of the graph of $y=\cos x+2$ corresponding to $\frac{\pi}{2} \leq x \leq \pi$. Write down an integral representing each of the following:
(a) the area of the surface obtained by revolving C about the x-axis
(b) the area of the surface obtained by revolving C about the y-axis
(c) the area of the surface obtained by revolving C about the line $x=4$
(d) the area of the surface obtained by revolving C about the line $y=3$
(e) the area of the surface obtained by revolving C about the line $x=-2$
(f) the area of the surface obtained by revolving C about the line $y=-1$

[2] Let R denote the region in the $x y$-plane bounded by the graphs of $y=\ln x, y=1$, and $y=1-x$. For each of the following, write down an integral representing the volume of the solid obtained by revolving R about the indicated line:
(a) the x-axis
(b) the y-axis
(c) the line $x=-2$
(d) the line $y=2$
(e) the line $x=4$
(f) the line $y=-1$

[3]Write a definite integral that represents the Area between the given curves.

$$
y=e^{x}, y=e^{2 x}, x=0, x=\ln 2
$$

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |${ }^{2}$

[4] Differentiate the following.
(a) $\frac{d}{d x}\left[y=\frac{1}{\tan ^{-1} x}\right]$
(b) $\sec \left[\sin ^{-1}(x-1)\right]$
[5] $\int \frac{1}{x \sqrt{1-(\ln x)^{2}}} d x$
[6] Evaluate the limit.

$$
\lim _{x \rightarrow \infty}\left(5+2 e^{2 x}\right)^{e^{-2 x}}
$$

[7] Evaluate each integral.
(a) $\int \cos ^{4} x d x$
(b) $\int e^{x} \cos x d x$
(c) $\int \frac{x}{x^{2}-6 x+5} d x$
(d) $\int \frac{\sqrt{1-4 x^{2}}}{x} d x$
[8] Determine if each of the following improper integrals converges or diverges. If it converges, state its value.
(a) $\int_{3}^{4} \frac{1}{(x-3)^{4 / 3}} d x$
(b) $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x$
[9] Determine if each series is absolutely convergent, conditionally convergent, or divergent. Indicate the convergence tests used
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2}}{(3 n)!}$
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
[10] Find a power series, centered at 0 , for the following functions. Identify the interval of convergence.
(a) $g(x)=\frac{4 x-7}{2 x^{2}+3 x-2}$
(b) $f(x)=\arctan 2 x$
[11] Find the nth Taylor polynomial centered at c.
(a) $f(x)=\sqrt{x}, n=4, c=1$
(b) $f(x)=x^{2} \cos x, n=2, c=\pi$
[12] Find the Maclaurin series for the function.
(a) $f(x)=\cos x^{3 / 2}$
[13] Sketch the curve represented by the parametric equations(indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter.

$$
x=\sec \theta, y=\cos \theta, 0 \leq \theta<\frac{\pi}{2}, \frac{\pi}{2}<\theta \leq \pi
$$

[14] Find two different sets of parametric equations for the rectangular equation.

$$
y=\frac{2}{x-1}
$$

[15] Convert the rectangular equation to polar form.
(a) $y=4$
(b) $y^{2}=9 x$
[16] Convert the polar equation to rectangular form.
(a) $r=3$
(b) $r=2 \csc \theta$

