SI Session Exam III Review
April $19^{\text {th }} 12: 00$ PM $-2: 00$ PM Rm. 1229

Prof. Stockton : Calculus II : Spring 2008
SI Leader : Neil Jody
[1] Determine if each of the following sequences converges or diverges. If it converges, indicate the limit.
(a) $a_{n}=\frac{2^{n}+1}{2^{n+1}}$
(b) $a_{n}=(-1)^{n} \sqrt[n]{n}$
[2] Find the sum of the following convergent series: $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n-2}}{3^{n}}$
[3] Determine if each series converges or diverges. Indicate the convergence tests used.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{2}-1}}{n^{2}+3}$
(b) $\sum_{n=1}^{\infty} \frac{3^{n} n!}{(2 n)!}$
(c) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$
[4] Determine if each series is absolutely convergent, conditionally convergent, or divergent. Indicate the convergence tests used.
(a) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n \ln n}$
(b) $\sum_{n=0}^{\infty} \frac{\cos ^{n} n}{(n+2)^{n}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2}}{(3 n)!}$
[5] Determine the radius of convergence for each of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{n!}{(2 n)!}(x+1)^{n}$
(b) $\sum_{n=0}^{\infty} \frac{n!}{2^{n}}(x-1)^{n}$
[6] Find the interval of convergence of the following power series.

$$
\sum_{n=0}^{\infty} \frac{10^{n+1}}{3^{2 n}} x^{n}
$$

[7] Let $f(x)=\sum_{n=1}^{\infty} \frac{2^{n}}{n}(x-1)^{n}$. Find: (a) $f^{\prime}(x)$, (b) $\int f(x) d x$, (c) the intervals of convergence for $f^{\prime}(x)$, $f(x)$, and $\int f(x) d x$.

