SI Session Exam III Review

Prof. Stockton : Calculus II : Spring 2008

April 19th 12:00 PM – 2:00 PM Rm. 1229

SI Leader : Neil Jody

[1] Determine if each of the following *sequences* converges or diverges. If it converges, indicate the limit.

(a)
$$a_n = \frac{2^n + 1}{2^{n+1}}$$
 (b) $a_n = (-1)^n \sqrt[n]{n}$

[2] Find the sum of the following convergent series: $\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n-2}}{3^n}$

[3] Determine if each series converges or diverges. Indicate the convergence tests used.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2 - 1}}{n^2 + 3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n n!}{(2n)!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

[4] Determine if each series is *absolutely* convergent, *conditionally* convergent, or divergent. Indicate the convergence tests used.

(a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{\cos^n n}{(n+2)^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^2}{(3n)!}$$

[5] Determine the *radius* of convergence for each of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{n!}{(2n)!} (x+1)^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{n!}{2^n} (x-1)^n$$

[6] Find the *interval* of convergence of the following power series.

[7] Let
$$f(x) = \sum_{n=1}^{\infty} \frac{2^n}{n} (x-1)^n$$
. Find: (a) $f'(x)$, (b) $\int f(x) dx$, (c) the intervals of convergence for $f'(x)$, $f(x)$, and $\int f(x) dx$.