SI Session Exam I Review
February $2^{\text {nd }} 12: 00$ PM - 2:00 PM Rm. 1229
February $5^{\text {th }} 5: 30-7: 30$ PM, Rm. 1130
February $6^{\text {th }} 4: 20-6: 20$ PM. Rm. 1229

1. Let R denote the region in the $x y$-plane bounded by the graphs of $y=\ln x, y=1$, and $y=1-x$. For each of the following, write down an integral representing the volume of the solid obtained by revolving R about the indicated line:
(a) the x-axis
(b) the y-axis
(c) the line $x=-2$
(d) the line $y=2$
(e) the line $x=4$
(f) the line $y=-1$

2. Let C be the portion of the graph of $y=\cos x+2$ corresponding to $\frac{\pi}{2} \leq x \leq \pi$. Write down an integral representing each of the following:
(a) the area of the surface obtained by revolving C about the x-axis
(b) the area of the surface obtained by revolving C about the y-axis
(c) the area of the surface obtained by revolving C about the line $x=4$
(d) the area of the surface obtained by revolving C about the line $y=3$
(e) the area of the surface obtained by revolving C about the line $x=-2$
(f) the area of the surface obtained by revolving C about the line $y=-1$

| | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |${ }^{2}$

3. Write the following in algebraic form.
(a) $\sec \left(\tan ^{-1}(4 x)\right)$
(b) $\cos \left(\cot ^{-1}(x)\right)$
(c) (c) $\sec \left[\sin ^{-1}(x-1)\right]$
4. Without using a calculator, find the exact value of $\sin \left(2 \arccos \left(-\frac{4}{5}\right)\right)$.
5. $\frac{d}{d x}\left[y=\frac{1}{\tan ^{-1} x}\right]$

$$
\frac{d}{d x}\left[y=\csc ^{-1}\left(e^{x}\right)\right]
$$

$$
\frac{d}{d x}\left[y=x^{2}\left(\sin ^{-1} x\right)^{3}\right]
$$

6. $\int \frac{1}{x \sqrt{1-(\ln x)^{2}}} d x$

$$
\int \frac{1}{\sqrt{16-6 x-x^{2}}} d x
$$

$$
\int \frac{e^{2 x}}{\sqrt{25-e^{2 x}}} d x
$$

$$
\int \frac{4 x+5}{x^{2}-4 x+5} d x
$$

7. Write a definite integral that represents the Area between the given curves.

$$
y=e^{x}, y=e^{2 x}, x=0, x=\ln 2
$$

8. Find the (arc) length of the curves.

The portion of the graph of $y=\frac{x^{3}}{12}+\frac{1}{x}$ from $x=1$ to $x=2$

The portion of the graph of $f(x)=3 x^{2 / 3}-10$ from $(8,2)$ to $(27,17)$

