SI Session Exam I Review February 2nd 12:00 PM – 2:00 PM Rm. 1229 February 5th 5:30 – 7:30 PM, Rm. 1130 February 6th 4:20 – 6:20 PM. Rm. 1229

Prof. Stockton : Calculus II : Spring 2008 SI Leader : Neil Jody

1. Let *R* denote the region in the *xy*-plane bounded by the graphs of $y = \ln x$, y = 1, and y = 1 - x. For each of the following, write down an integral representing the volume of the solid obtained by revolving *R* about the indicated line:

(a) the <i>x</i> -axis	(b) the <i>y</i> -axis	(c) the line $x = -2$
(d) the line $y = 2$	(e) the line $x = 4$	(f) the line $y = -1$

- 2. Let *C* be the portion of the graph of $y = \cos x + 2$ corresponding to $\frac{\pi}{2} \le x \le \pi$. Write down an integral representing each of the following:
 - (a) the area of the surface obtained by revolving C about the x-axis
 - (b) the area of the surface obtained by revolving C about the y-axis
 - (c) the area of the surface obtained by revolving *C* about the line x = 4
 - (d) the area of the surface obtained by revolving *C* about the line y = 3
 - (e) the area of the surface obtained by revolving *C* about the line x = -2
 - (f) the area of the surface obtained by revolving C about the line y = -1

- 3. Write the following in algebraic form.
 - (a) $\sec(\tan^{-1}(4x))$
 - (b) $\cos(\cot^{-1}(x))$
 - (c) (c) $\sec[\sin^{-1}(x-1)]$

4. Without using a calculator, find the exact value of $sin(2 \arccos(-\frac{4}{5}))$.

$$5 \cdot \frac{d}{dx} \left[y = \frac{1}{\tan^{-1} x} \right]$$

$$\frac{d}{dx} \left[y = \csc^{-1} \left(e^x \right) \right]$$

$$\frac{d}{dx} \left[y = x^2 \left(\sin^{-1} x \right)^3 \right]$$

$$6. \int \frac{1}{x\sqrt{1-\left(\ln x\right)^2}} \, dx$$

$$\int \frac{1}{\sqrt{16 - 6x - x^2}} \, dx$$

$$\int \frac{e^{2x}}{\sqrt{25 - e^{2x}}} dx$$

$$\int \frac{4x+5}{x^2-4x+5} \, dx$$

7. Write a definite integral that represents the Area between the given curves.

$$y = e^x$$
, $y = e^{2x}$, $x = 0$, $x = \ln 2$

8. Find the (arc) length of the curves.

The portion of the graph of $y = \frac{x^3}{12} + \frac{1}{x}$ from x = 1 to x = 2

The portion of the graph of $f(x) = 3x^{\frac{2}{3}} - 10$ from (8,2) to (27,17)